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Abstract. In this work, we show that several problems, that are naturally represented as Nonlinear
Absolute Value Equation problems (in short, NAVE), can be reformulated as Nonlinear Comple-
mentarity Problems (in short, NCP) and, under mild conditions, they can be efficiently solved using
smoothing regularizing techniques. To the best of our knowledge, this is the first numerical approach
that deals directly with Nonlinear Absolute Value Equations. We also identify a commonly used
technical assumption in smoothing techniques and prove its equivalence to a classical  Lojasiewicz
inequality at infinity, confirming in particular that this assumption is not restrictive. The effective-
ness of our approach is illustrated in several problems, including asymmetric ridge optimization and
nonlinear ordinary differential equations.
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1 Introduction

The last two decades, absolute value equation problems (in short, AVE problems) have been ex-
tensively studied in the literature. This interest is justified by the fact that this class of problems
already covers a wide spectrum of applications: indeed, numerous problems stemming from real-life
applications, as for instance all mixed integer linear programming problems, can be reformulated
as AVE problems. It is also well-known, see [24, 32] e.g., that AVE problems admit an equivalent
description as Linear Complementarity problems (in short, LCP). The exact definitions of an AVE
problem and a LCP are recalled below. Dealing efficiently with these problems is thus paramount.

The literature on this subject contains several theoretical results for existence as well as conditions
guaranteeing uniqueness of the solution [22, 23, 34, 35]. Concurrently, there are also various nu-
merical approaches to solve an AVE problem. Generally speaking, these methods can be divided
into at least three categories [3] : iterative linear algebra based methods (also known as projective
methods), semi-smooth Newton-like methods and smoothing methods. The aforementioned meth-
ods generally require some assumption on the matrix involved in the AVE problem. In particular,
the classes of P0-matrices and P -matrices (recalled below) turn out to be particularly relevant in
this study [1].

In this work, we consider a natural generalization of (linear) AVE problems to nonlinear ones,
known as Nonlinear Absolute Value Equations (in short, NAVE). This more general framework
encompasses new applications including ridge regression models, bounded constrained nonlinear
systems of equations, and stiff Ordinary Differential Equations (in short, stiff ODE). This approach
to deal with the aforementioned problems, based on NAVE, is to the best of our knowledge, com-
pletely new in the literature.

Our main contribution is the following: we first show that similarly to the way that an AVE problem
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is linked to a LCP, nonlinear absolute value equations can also be associated to nonlinear comple-
mentarity problems (in short, NCP). Indeed, any NCP can be reformulated as NAVE. The converse
is also true, but the association is generally given in an implicit way. Then, taking profit from the
huge literature concerning existence, uniqueness and numerical resolution of NCP (see [9,23,35,37]
e.g.), we propose a new method to solve a NAVE problem, based on the smoothing technique
proposed in [10] and further developments in the follow-up work [30]. The proposed approach is
explained in Section 2, while in Section 3 we discuss applications.

To ease the reading we start with some definitions and settings. The Absolute Value Equality
problem (in short, AVE) is defined as follows:

find x ∈ Rd : Ax− |x| = b, (AVE)

where A is a (d × d)-matrix and b ∈ Rd. Throughout this work, given x = (x1, . . . , xd)T ∈ Rd, we
use the notation |x| := (|x1|, . . . , |xd|)T componentwise to denote a vector in Rd

+.

Denoting by I the identity matrix of Rd and assuming that either A− I or A+ I is invertible, the
(AVE) problem can be transformed to a Linear Complementarity Problem (in short, LCP). Indeed,
setting (coordinate by coordinate) {

y = x+ = max { x, 0}
z = x− = max {−x, 0}

(1.1)

and performing the transformation x = y − z and |x| = y + z we obtain:

(A− I) y − (A+ I) z = b.

Therefore for{
M := (A+ I)−1(A− I)

q := (A+ I)−1(−b)
or respectively

{
M̃ := (A− I)−1(A+ I)

q̃ := (A− I)−1b
(1.2)

we obtain {
z = My + q

0 ≤ y ⊥ z ≥ 0
or respectively

{
y = M̃z + q̃

0 ≤ y ⊥ z ≥ 0
(LCP)

The above problem can be solved provided M (respectively M̃) is a P -matrix (see below for details).
It is important to notice that this property can be traced back to the matrix A; in particular, the
property is ensured whenever the singular values of A are all greater than 1. Notice that this
condition guarantees invertibility of both A− I and A+ I.

Solving (LCP) under the assumption that M (respectively M̃) is a P -matrix has been treated in
several works (see [4]). In this case, it can be shown that the problem has a unique solution (ȳ, z̄)
yielding that x̄ := ȳ − z̄ is the (unique) solution of (AVE). Moreover, this solution can be obtained
numerically, via smoothing regularization techniques (see [1, 10,30] and Section 2.3 below).

In this work, we propose a new method of solving a nonlinear generalization of (AVE), namely the
following Nonlinear Absolute Value Equality problem (in short, NAVE)

Find x ∈ Rd : F (x)− |x| = 0 (coordinatewise), (NAVE)
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where F : Rd → Rd is a (nonlinear) mapping. By introducing new variables y = x+ and z = x−

(cf. (1.1)) so that x = y − z and |x| = y + z, (NAVE) becomes

F (y − z)− (y + z) = 0.

By setting z = H(y) (which is possible under regularity assumptions on F , see Lemma 2.5), we can
transform (NAVE) to a Nonlinear Complementarity Problem (NCP):{

H(y) = F (y −H(y))− y
0 ≤ y ⊥ H(y) ≥ 0.

(1.3)

As we shall see in Section 2.3, even though the function H is only defined implicitly, it is still possible
to solve (1.3) numerically provided we are able to guarantee that H is a P0-map (see Definition 2.2),
a notion which generalizes P0–matrices (c.f. Lemma 2.7).

This is the first work that directly addresses nonlinear absolute value equations, besides the fact
that a variety of real problems and applications can naturally assume this form.

Another important contribution related to smoothing techniques for NCP is that we clearly charac-
terize a technical assumption commonly employed in functions–smoothing and prove its equivalence
with the classical  Lojasiewicz inequality at infinity (see Theorem 2.8). This clearly reveals that the
former assumption is not at all restrictive.

2 Setting of the problem and description of the method

2.1 Definitions and preliminaries

Given a (d × d) matrix A and I ⊂ {1, 2, · · · , d}, we denote by AII the submatrix made up of the
rows and columns of I.

Definition 2.1 (P0-matrix and P -matrix). A matrix A is called a P0–matrix (respectively, P–
matrix) if one of the following equivalent properties holds

(i) for every I ⊂ {1, 2, · · · , d}, det(AII) ≥ 0 (respectively det(AII) > 0);

(ii) for every x = (x1, · · · , xd)T ∈ Rd, x ̸= 0,

max
1≤j≤d

(Ax)jxj ≥ 0

(
respectively max

1≤j≤d
(Ax)jxj > 0

)
;

(iii) for every I ⊂ {1, 2, · · · , d}, the real eigenvalues of AII are nonnegative (respectively strictly
positive).

The notion of P -matrix can be generalized to general nonlinear maps H : Rd → Rd as follows:

Definition 2.2 (P0–map and P–map). A mapping H : Rd → Rd is called P0-map (respectively,
P -map), if for every x, y ∈ Rd, x ̸= y, it holds:

max
j∈{1,...,d}

(
H(y)j −H(x)j

)
(yj−xj) ≥ 0

(
respectively, max

j∈{1,...,d}

(
H(y)j −H(x)j

)
(yj − xj) > 0

)
;
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If H is of the form H(x) = Ax + b for some (d × d) matrix A and vector b ∈ Rd, then it follows
directly that H is a P0–map (respectively, a P–map) if and only if A is a P0–matrix (respectively,
a P–matrix). More generally, we have the following result:

Lemma 2.3 ([27, Corollary 5.3, Theorem 5.8]). Let H : Rd → Rd be C1. Then H is a P0-map if
and only if, for every x ∈ Rd, ∇H(x) is a P0-matrix.

We refer the reader to [8,27] for further results about P0– and P–matrices and maps. We finish this
section with the following useful lemma.

Lemma 2.4 (A characterization of P0–matrices). Let A be a (d×d) matrix. Then A is a P0-matrix
if and only if, for every diagonal matrix ∆1 with strictly positive entries and for every nonnegative
diagonal matrix ∆2, the matrix ∆1 + ∆2A is invertible.

Proof. Let A be a P0-matrix. Then for every diagonal matrix ∆2 with nonnegative entries, the
matrix ∆2A is also P0, while for every diagonal matrix ∆1 with strictly positive entries, the matrix
∆1 + ∆2A is a P -matrix, therefore, in particular, it is invertible.

Conversely, let us assume that A is not a P0–matrix. Then there exists v ∈ Rd, v ̸= 0 such that

(Av)ivi < 0, for every i ∈ {1, · · · , d}. (2.1)

Let ∆1 = diag(δ11 , · · · , δd1) and ∆2 = diag(1, · · · , 1). Then

(∆1 + ∆2A)v = (δ11v
1 + (Av)1, · · · , δd1vd + (Av)d)T ,

and by setting, for every i, δi1 := −(Av)i/vi (which is well-defined and strictly positive thanks
to (2.1)) we deduce that (∆1 + ∆2A)v = 0 and therefore ∆1 + ∆2A is not invertible. 2

2.2 Transforming a (NAVE) problem to a (NCP) problem

Given a nonlinear mapping F : Rd → Rd, we consider the (NAVE) problem

Find x ∈ Rd : F (x)− |x| = 0.

By introducing new variables y = x+ and z = x− so that x = y− z, |x| = y+ z, y ⊥ z, the (NAVE)
problem becomes

F (y − z)− (y + z) = 0. (2.2)

The following lemma gives conditions under which (2.2) may be written as a (NCP) problem by
setting y = H(z) or z = H̃(y) for some suitable maps H or H̃.

Lemma 2.5. Assume that the mapping F is C1 in a neighborhood of the point x∗ = y∗ − z∗ ∈ Rd

which is assumed to be solution of (2.2). Then it holds:

(i). If F − I is a P0-map, then there exists a C1 map H : Rd → Rd defined in a neighborhood of y∗

such that z∗ = H(y∗) and y∗ is a solution to the following (NCP) problem:{
H(y) = F (y −H(y))− y
0 ≤ y ⊥ H(y) ≥ 0.

(2.3)
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(ii). If −(F + I) is a P0-map, then there exists a C1 map H̃ : Rd → Rd defined in a neighborhood
of z∗ such that y∗ = H̃(z∗) and z∗ is a solution to the following (NCP) problem:{

H̃(z) = F (H̃(z)− z)− z
0 ≤ z ⊥ H̃(z) ≥ 0.

(2.4)

Proof. We consider the C1 map F : R2d → R defined by

F(y, z) = F (y − z)− (y + z).

We are going to apply the implicit function theorem at the point (y∗, z∗) ∈ R2d. Notice that

(∇yF(y∗, z∗),∇zF(y∗, z∗)) = (∇F (y∗ − z∗)− I,−∇F (y∗ − z∗)− I).

If F − I is a P0-map, then ∇F (x∗) − I is a P0-matrix by Lemma 2.3. Applying Lemma 2.4, we
obtain that 2I +∇F (x∗) − I = ∇F (x∗) + I is invertible. Therefore ∇zF(y∗, z∗) is invertible and,
by the implicit function theorem, we obtain a map H such that (i) holds. Similarly, if −(F + I) is a
P0-map, then 2I − (∇F (z∗) + I) = I −∇F (z∗) = −∇yF(y∗, z∗) is invertible and we obtain a map

H̃ such that (ii) holds. 2

Remark 2.6. (i) The condition F − I (respectively, −(F + I)) being a P0-map is actually quite
natural since it is exactly the requested assumptions to solve the (NCP) problem, see Section 2.3.

(ii) (NAVE vs AVE). At this stage, the reader may have already noticed an analogy with the (LCP)
reformulation of (AVE). Indeed, if F (x) = Ax− b, then (NAVE) coincides with (AVE), and if either
A− I or −(A+ I) is a P0-matrix (which is automatically satisfied if, e.g., the singular values of the
matrix A are greater than 1), then the functions H and H̃ are explicitly given by the formulae

H(y) = My + q and H̃(y) = M̃z + q̃,

where M,M̃ , q and q̃ appear in (1.2). Consequently, in this case it is possible to solve (AVE) as
explained in the introduction.

2.3 Smoothing techniques to solve (NCP)

As already mentioned, even though the functions H and H̃ are only implicitly defined, we can
still solve (2.3)–(2.4) numerically (we shall do so below), whenever it is guaranteed that H, H̃ are
P0-maps. This is the aim of the following lemma, yielding a criterium based on F .

Lemma 2.7 (Guaranteeing P0-property for H, H̃).

(i). If F − I is a P0-map, then so is H.

(ii). If −(F + I) is a P0-map, then so is H̃.

Proof. We now focus on the case of (2.3), the case of (2.4) can be adapted accordingly. Let
y1, y2 ∈ Rd, with y1 ̸= y2. We infer from (2.3) that

2H(yk) = F (yk −H(yk))− (yk −H(yk)) , k ∈ {1, 2}.
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Setting tk := yk −H(yk), it follows

2H(yk) = (F − I)(tk).

Using the fact that F −I is a P0-map, we deduce that for some coordinate j = j(t1, t2) ∈ {1, . . . , d},
we have

2
(
H(y1)

j −H(y2)
j
)

(tj1 − t
j
2) ≥ 0,

from which we infer (
H(y1)

j −H(y2)
j
) (

(yj1 − y
j
2)− (H(y1)

j −H(y2)
j)
)
≥ 0,

yielding (
H(y1)

j −H(y2)
j
)

(yj1 − y
j
2) ≥

(
H(y1)

j −H(y2)
j
)2 ≥ 0.

This is the desired property for the map H. 2

To solve (2.3), we will apply the smoothing approach proposed in [10] and more precisely the
non-parametric technique introduced in [30]. The overall approach of [10] is based on functions θ
satisfying the following properties:

� the function θ : R→ (−∞, 1) is concave, continuous and nondecreasing;

� θ(t) < 0, for all t ∈ (−∞, 0), θ(0) = 0 and lim
t→+∞

θ(t) = 1.

These functions are used as certificate of positivity, that is, they “detect” whether t = 0 or t > 0
holds in a “continuous way”, in the sense of the following characterization:

t > 0 ⇐⇒ lim
r→0

θ

(
t

r

)
= 1.

The authors in [10] used these functions to regularize the (nonsmooth) (NCP)

0 ≤ x ⊥ H(x) ≥ 0, (2.5)

by means of a sequence of smooth systems (indexed by r > 0) of the form

Gr(x,H(x)) =
(
Gr(x,H(x))1, · · · , Gr(x,H(x))d

)T
= (0, · · · , 0)T , (2.6)

where

Gr(x,H(x))i := rψ−1

[
ψ

(
xi

r

)
+ ψ

(
H(x)i

r

)]
with ψ := 1− θ.

Then they eventually take the limit as r tends to 0.

Several convergence results have been established under the assumption that the problem has at
least one solution and H is a P0–map. Although this approach is efficient numerically, it suffers
from two drawbacks:

� There is no clear or optimal strategy to drive the parameter r to 0.
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� The following ad hoc technical assumption on the function ψ has been used without rigorous
explanation:

there exist a ∈ (0, 1) and Ra > 0 such that:
ψ(t)

2
≥ ψ

(
1

a
t

)
, for all t ∈ (Ra,+∞). (2.7)

The first drawback has been addressed in [30] by considering a larger system of equations{
Gr(x,H(x)) = (0, · · · , 0)T ,

1
2∥x

−∥2 + 1
2∥H(x)−∥2 + r2 + εr = 0,

(2.8)

where ε > 0 is some positive parameter. The second drawback will be the subject of the following
result which proves that this technical assumption (2.7) corresponds to a well-known property.

Theorem 2.8 (asymptotic behavior). Let ψ : (0,∞) → (0,∞) be a convex decreasing function
satisfying

lim
x→∞

ψ(x) = inf ψ = 0.

The following assertions are equivalent:

(i). ( Lojasiewicz inequality at infinity) There exists c > 0 such that

lim inf
x→∞

x|ψ′(x)|
ψ(x)

> c > 0.

(ii). There exist m,n > 1 and R > 0 such that:

ψ(x)

m
≥ ψ(nx), for all x ∈ (R,+∞) (2.9)

(iii). For every m > 1 there exist n > 1 and R > 0 such that:

ψ(x)

m
≥ ψ(nx), for all x ∈ (R,+∞)

Notice that the technical assumption (2.7) corresponds to (ii). Therefore, the above result shows
that it is equivalent to assume that ψ satisfies the  Lojasiewicz inequality at infinity. This latter
condition is always satisfied if the function ψ is semialgebraic: Indeed, in this case, the correspond-
ing Hardy field (that is, the field of germs of real semialgebraic functions at infinity) has rank one,
and consequently, for any non-ultimately zero semi-algebraic function ψ in the single variable x,
the function x 7→ xψ′(x)/ψ(x) has a non-zero limit as x goes to infinity (see [7, Remark 2.9]). The
same argument applies also for the more general case of functions ψ that are definable in some
polynomially bounded o-minimal structure (we refer to [6] for the corresponding definitions).

Proof. (i)⇒(ii). Let us assume that (ii) fails. We define inductively a sequence {yn}n ⊂ [1,+∞)
such that

lim
n→∞

yn = +∞ and lim
n→∞

yn|ψ′(yn)|
ψ(yn)

= 0.
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To this end, we set x1 = y1 = 1. Since (ii) fails, for every n ≥ 2, taking m = 1 + 1
n and R = yn−1

we obtain the existence of some xn > R such that for yn := nxn it holds

ψ(xn)

m
< ψ(yn) yielding

ψ(xn)

ψ(yn)
− 1 < m− 1 =

1

n
. (2.10)

Using convexity we also deduce that∣∣ψ′(yn)
∣∣ ≤ ψ(xn)− ψ(yn)

yn − xn
=

(
n

n− 1

)(
ψ(xn)− ψ(yn)

yn

)
,

whence, from (2.10),

0 ≤ yn|ψ′(yn)|
ψ(yn)

≤
(

n

n− 1

)(
ψ(xn)

ψ(yn)
− 1

)
<

1

n− 1
.

Taking the limit as n → ∞ we conclude that (i) also fails to hold, which establishes the desired
implication.

(ii)⇒(iii). Assume that (2.9) holds for some m0 > 1, n0 and R0 > 1, that is, for all x > R0 we have
ψ(x) ≥ m0 ψ(n0x). Then since n0x > x > R we also have:

ψ(n0x) ≥ m0 ψ(n20x) yielding ψ(x) ≥ m2
0 ψ(n20x).

We conclude that (2.9) also holds for m1 = m2
0 (under the choice of n1 = n20 and R1 = R0).

Repeating this argument we deduce that (2.9) holds for all mk = mk
0, k ≥ 1 (taking nk = nk0 and

Rk = R0). Since mk →∞, in order to establish (iii) it is sufficient to observe that if (2.9) holds for
some m̄ > 1 (together with some n̄ > 1 and R̄ > 0) then it also holds for all m ∈ (1, m̄], since

ψ(x)

m
≥ ψ(x)

m̄
.

(iii)⇒(i). Fix m > 1, n > 1 and R > 0 such that (2.9) holds and set

c :=

(
m− 1

m

)(
1

n− 1

)
> 0.

Using convexity of ψ and (2.9), we deduce that for all x > R we have:∣∣ψ′(x)
∣∣ ≥ ψ(x)− ψ(nx)

nx− x
=⇒ x|ψ′(x)|

ψ(x)
≥
(

1

n− 1

)(
1− ψ(nx)

ψ(x)

)
≥ c.

This establishes (i) and finishes the proof. 2

Remark 2.9. As already mentioned, assertion (i) ( Lojasiewicz inequality at infinity) holds true
whenever the function ψ is semialgebraic (or more generally, definable in a polynomially bounded
o-minimal structure). This already provides a broad assembly of examples of functions satisfy-
ing (i), together with straightforward criteria to detect easily whether the property holds, based on
certificates of semialgebricity or o-minimality (see [6, Theorem 1.13] e.g.).

This being said, let us draw reader’s attention to the fact that besides what is asserted in [7, Propo-
sition 2.7], the assumption of polynomial boundedness is essential for the validity of (i). Indeed,
as shown in [21, Remark 8], the convex function ψ(x) = (log(1 + x))−1 is definable in the log-exp
o-minimal structure but fails to satisfy (i).
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2.4 Algorithm and numerical results

To solve the system of equation (2.8), we will apply the Newton-like method proposed in [30].
However, since H is defined implicitly, we first need to reformulate the problem as follows:

z − F (y − z) + y = 0

rψ−1
(
ψ(y

i

r ) + ψ( z
i

r )
)

= 0 i = 1 . . . d,

1
2∥y

−∥2 + 1
2∥z

−∥2 + r2 + εr = 0,

(2.11)

where the variable z plays the role of H(y).

Remark 2.10. In this new system of equations we assume that case (i) of Lemma 2.5 holds. (One
can proceed in a similar way if (ii) holds.)

In the definition of the following algorithm, we set X := (y, z, r)T and

H(X) :=


z − F (y − z) + y

rψ−1
(
ψ(y

i

r ) + ψ( z
i

r )
)

i = 1 . . . d,
1
2∥y

−∥2 + 1
2∥z

−∥2 + r2 + εr

(2.12)

so that (2.11) is reduced to H(X) = 0. This algorithm corresponds to a Newton method under a
standard Armijo line search.

Algorithm

1. Chose X0 = (X0, r0), X0 ∈ Ξ, r0 = ⟨y0, z0⟩/n, τ ∈ (0, 1/2), ϱ ∈ (0, 1). Set k = 0.
2. If H(Xk) = 0, stop.
3. Find a direction dk ∈ R2n+1 such that

H(Xk) +∇XH(Xk)dk = 0.

4. Choose ζk = ϱjk ∈ (0, 1), where jk ∈ N is the smallest integer such that

Θ(Xk + ϱjkdk)−Θ(Xk) ≤ τϱjk ∇Θ(Xk)Tdk.

5. Set Xk+1 = Xk + ζkdk and k ← k + 1. Go to step 2.

The merit function used in the line search corresponds to the square of the global error:

Θ(X) =
1

2
∥H(X)∥2.

To get a well defined algorithm, the initial point (y0, z0)T must be an interior point, and the initial
value for r must be positive r0 > 0.
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3 Applications

In this section we show that several problems, which can be naturally restated as (NAVE) and
can be solved efficiently thanks to the above transformation. We present in this section numerical
experiments, in which the smoothing functions are restricted to two specific cases

θ1(t) :=


t

t+ 1
, t ≥ 0

t, t < 0
and θ2(t) := 1− e−t.

The numerical experiments are conducted in an ordinary computer. All program codes are written
and executed in MATLAB R2023a. In Subsection 3.1 and 3.3, we employ a similar stopping criterion
for every numerical method, by using a tolerance Tol = 1e−10 and fixing the maximum number of
iterations to Nmax = 2000. Since the NAVE problems may have multiple solutions, in the following,
the error will be computed by Error = ∥F (xapproximate) − |xapproximate|∥ in Subsection 3.1 and
respectively by Error = ∥F (xapproximate)− |xapproximate| − b∥) in Subsection 3.3).

3.1 Ridge Regression

Ridge regression adds to the loss function L(x), x ∈ Rd a penalty term in order to avoid overfitting:
historical development and the applications in data science of ridge regression can be found e.g.
in [12, 14]. This penalty term usually consists of adding the squared magnitude of the coefficients
(traditionally denoted by w).

We hereby consider an asymmetric ridge regression of the form:

min
x∈Rd

L(x) +
d∑

j=1

(
λj max{xj , 0}2 + µj max{−xj , 0}2

) , (3.1)

where the penalization parameters λj and µj satisfy λj − µj ̸= 0 for all j ∈ {1, · · · , d}. The case
λj = µj = λ for every j corresponds to the classical ridge regression, which will not be considered
here. On the other hand, the case λj = 0 for all j and µj > 0, corresponds to a penalization of the
negativity of the coefficients, promoting solutions with positive coefficients. The necessary condition
for optimality reads as follows:

∇L(x) + 2λmax{x, 0} − 2µmax{−x, 0} = 0,

where the two vectors λmax{x, 0} and µmax{−x, 0} are to be understood componentwise. Noticing
that 2 max{x, 0} = |x|+x and 2 max{−x, 0} = |x|−x, we end up with the following (NAVE) problem

F (x)− |x| = 0 with F (x) =

(
1

µ− λ

)
∇L(x) +

(
µ+ λ

µ− λ

)
x (coordinatewise)

Therefore, one can solve the previous problem if either F − I or −(F + I) is a P0–map, that is

either (µ− λ)−1 (∇L+ 2λI) or − (µ− λ)−1 (∇L+ 2µI) is a P0–map.

To illustrate for asymmetric ridge regression, we consider the loss function

L(x) =
1

2
∥Ax− b∥2, where A ∈ Rm×d and b ∈ Rd. (3.2)
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We performed numerical experiments, fixing λj = λ̄ and µj = µ̄ for every j ∈ {1, · · · , d}. These
parameters, matrix A ∈ Rm×d and vector b ∈ Rd were randomly generated with values in [−5, 5].

As shown in Table 1, considering the average number of iterations with similar tolerance, using
the function θ2 is better, while in an exceptional case m = 20 > d = 10 and (λ̄, µ̄) = (0, 100),
θ2–smoothing performs worse. On the other hand, while the parameters λ̄ and µ̄ become greater,
which can be compared to the ascent of the (classical) ridge parameter, θ2–smoothing performs
within a better tolerance in a small number of iterations.

Table 1: Comparing (asymmetric) ridge regression with different smoothing functions

Error Iterations Running time(×e− 2(s))

(λ̄, µ̄) (m, d) θ1 θ2 θ1 θ2 θ1 θ2

(0, 100) (3, 10) 1.9e− 11 7.3e− 15 18 21 4.81 2.96

(5, 10) 5.8e− 11 1.3e− 16 17 71 4.78 6.26

(10, 10) 5.4e− 11 1.9e− 16 18 24 5.78 3.45

(20, 10) 3.8e− 11 3.5e− 3 17 2000 4.94 819

(200, 1000) (3, 10) 8.9e− 11 1.4e− 17 18 23 5.62 2.99

(5, 10) 2.7e− 11 3.6e− 18 19 22 5.12 2.9

(10, 10) 6e− 11 2.7e− 17 18 33 4.93 3.87

(20, 10) 4.18e− 11 1.2e− 10 18 40 5.41 4.17

To end this part, we give a heuristic observation on a sparse optimization problem (see e.g. [13,36]).
Let us consider the following problem

min
x∈Rd

L(x) + λ∥x∥1. (3.3)

The first order optimality condition for (3.3) has the form

0 ∈ ∇L(x) + λ∂∥ · ∥1(x), (3.4)

where the subdifferential of ℓ1 norm can be written explicitly as

q ∈ ∂∥ · ∥1(x) if and only if

{
qi = sign(xi), if xi ̸= 0,

|qi| ≤ 1, if xi = 0.

Using the fact that α sign(α) = |α| for every α ∈ R, the inclusion (3.4) can be transformed into

x∇L(x) + λ|x| = 0 (coordinatewise).

The above equation just provides a necessary condition for optimal solution. In the following, we
give a short numerical observation to guarantee its potential utility in sparse optimization. In order
to apply results from previous sections, it is necessary to ensure that one of the following maps is
a P0-map

− 1

λ
x∇L(x)− I and

1

λ
x∇L(x)− I.
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In the following figures, we use the same quadratic loss function (3.2), where matrix A and vector b
are randomly generated ranging from −1 to 1 and −0, 05 to 0, respectively. Figure 1 shows the
behavior of each coefficient while increasing the tuning parameter λ > 0.

(a) θ1–smoothing (b) θ2–smoothing.

Figure 1: Problem in dimension m = 20 and d = 40.

3.2 Nonlinear ordinary differential equations

A NAVE problem also naturally arises when we deal with a discretization of a nonlinear ordinary
differential equation (ODE, for short) involving rough velocity, for example γ̇(t) =

√
|γ(t)| as well

as an ODE of the form
Φ(X(2k), X(2k−1), . . . , Ẋ) = |X|

In this subsection we provide two examples (one being a stiff ODE) to illustrate the effectiveness of
smoothing techniques when using finite difference schemes for ODEs.

Example 3.1. We consider a stiff ODE with initial value as follows{
ẍ+ 1001ẋ− 1000|x| = 0, t > 0

x(0) = x0 < 0, ẋ(0) = 0,
(3.5)

whose exact solution is

xexact(t) = x0

(
− 1

999
e−1000t +

1000

999
e−t

)
≈ x0e−t.

Let us consider problem (3.5) in time domain I = [0, T ]. We use a uniform mesh ttt = (ti), where
ti = ih for i ∈ {0, · · · , N} and h = T/N , and the approximation solution will be xxx = (xi) where
xi ≈ x(ti). For the first and the second derivative, we use the 2nd–order approximation

ẍ(ti) ≈
xi−2 − 2xi−1 + xi

h2
and ẋ(ti) ≈

xi+1 − xi−1

2h
.

Remarkably, at the final time, the first derivative ẋ(tN ) will be computed via the 2nd–order backward
formula ẋ(tN ) ≈ (xN−2 − 4xN−1 + 3xN )/2h. Since the initial velocity is zero, using 1st–order
backward approximation, we note that x−1 = x0. The discretization of (3.5) can be written as

1

1000
AAAxxx+

1001

1000
BBBxxx− |xxx| = bbb,
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where AAA,BBB ∈ RN×N is determined by

AAA =
1

h2



1 0 0 · · · 0 0 0
−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0 0
0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1


and BBB =

1

2h



0 1 0 · · · 0 0 0
−1 0 1 · · · 0 0 0
0 −1 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 1 0
0 0 0 · · · −1 0 1
0 0 0 · · · 1 −4 3


(3.6)

Here, vector bbb = (bi) ∈ RN is defined by bi = 0 for i ≥ 2, b1 = x0(1/(1000h2) + 1001/(2000h)) and
b2 = −x0/(1000h2).
In Figure 2.(a), we approximate the solution of equation (3.5) with initial condition x0 = −1 and
time interval I = [0, 5]. The finite difference scheme was computed with mesh size h = 0.05 and
the error is 9.22e − 4 when applying θ1 and θ2 smoothing funtions. To get convergence rate in
Figure 2.(b), we apply difference mesh sizes in the same time interval I = [0, 1] and intial condition
x0 = −2.

(a) Approximate solutions. (b) Convergence rate O(h1/2).

Figure 2: Solving equation 3.5

Let us now make some comments on the utility of NAVE for boundary value problems: we consider
a boundary value problem related to (3.5){

ẍ+ 1001ẋ− 1000|x| = 0, t ∈ (0, T ),

x(0) = x0 < 0, x(T ) = y0 ∈ R.
(3.7)

In order to illustrate this case, we consider the time interval I = [0, 2] and exact solution is deter-
mined by xexact. Using similar time mesh as above, the first and second derivatives are approximate
as follows

ẍ(ti) ≈
xi−1 − 2xi + xi+1

h2
and ẋ(ti) ≈

xi − xi−1

h
.

Figure 3 shows the convergence rate for the boundary value problem (3.7). The smoothing technique
used in this problem presents a better accuracy compared to the above initial value problem, which
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seems to be natural because of the stiffness of the problem (3.5). It is noteworthy that Figure 3
also depicts an expected convergence rate since we have used a first order approximation for ẋ.

Figure 3: Convergence rate O(h) for a boundary value problem

Example 3.2. For a continuous function f : [0,+∞)→ R, we consider an ODE{
ẍ+ arctan(x)− |x| = f(t), t > 0,

x(0) = x0 ∈ R, ẋ(0) = 0.
(3.8)

Using a similar discretization as in Example 3.1, the unknown variable xxx ≈ x(ttt) solves a NAVE
problem as follows

AAAxxx+ arctan(xxx)− |xxx| = bbb, (3.9)

where the matrix AAA is determined as in Example 3.1 and the vector bbb ∈ RN is defined by bi = f(ti)
for i ≥ 2 and

b1 = f(t1) +
x0
h2

and b2 = f(t2)−
x0
h2
.

To illustrate for this example, we consider problem (3.8) with source term

f(t) = arctan(cos(πt))− | cos(πt)| − π2 cos(πt),

whose exact solution is xexact(t) = cos(πt). Figure 4.(a) shows the approximate solution on the
time interval I = [0, 1] with mesh size h = 0.0125. The error between θ1 (resp. θ2) approximation
and exact solution is 0.06 (resp. 0.0725). Besides, Figure 4.(b) displays convergence rate of the
combination of finite difference scheme and the θ–smoothing applying for the associated NAVE
problem.
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(a) Approximate solutions. (b) Convergence rate O(h).

Figure 4: Solving equation 3.8.

3.3 Comparison of methods for NAVE

Instead of smoothing procedure considered in Section 2, one can solve a NCP via other numerical
methods. In this subsection we give examples to compare the efficiency of four methods

� Newton–like method with smoothing functions θ1 and θ2;

� approximating by Soft–Max function, in which the main idea is to approximate the comple-
mentarity condition via the limit

max
i∈{1,··· ,d}

xi = lim
r↘0

r log

(
d∑

i=1

exi/r

)
.

which have been widely used in many optimization problems, for example [31, Example 1.30],
[19, 20,28];

� using interior point method, for example, one can find the use of interior point method for
complementarity problems in [11,15,17,29].

Now, in the following examples, we solve the system F̃ (x)−|x| = b, especially, Example 3.4 and 3.5
can be found in [2, 18].

Example 3.3. We consider F̃ (x) = Ax, where

A = tridiag(−1, 4,−1) ∈ Rd×d, x∗ ∈ Rd, b = Ax∗ − |x∗|. (3.10)

Example 3.4. F̃ : R3 → R3 is defined by

F̃ (x) :=

 2x1 − 2

2x2 + x32 − x3 + 3

x2 + 2x3 + 2x33 − 3

 .
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Example 3.5. F̃ : R4 → R4 is defined by

F̃ (x) :=


3x21 + x1 + 2x1x2 + 2x22 + x3 + 3x4

2x21 + x1 + x22 + x2 + 10x3 + 2x4

3x21 + x1x2 + 2x22 + 3x3 + 9x4

x21 + 3x22 + 2x3 + 4x4

 .

Table 2 compares the four methods: smoothing method with θ1 and θ2, Soft Max (denoted SM) and
Interior Point (denoted IP) method on the NAVE problem associated to Example 3.3–3.5. In the
first example, the vector b is randomly generated with values in [−5, 5] and the problem is considered
in dimensions d = 10, 50, 200. In Example 3.4 and 3.5, we respectively consider b1 = (−1,−5, 10)T ,
b2 = (9,−100, 10)T , b3 = (200, 0, 900)T , b∗1 = (10, 10,−12, 0)T , b∗2 = (20,−100,−12, 1)T and b∗3 =
(200, 10,−5,−5)T . We observe that the smoothing method (especially with θ2–smoothing function)
is the most robust among the considered methods. In connection with convergence speed, the
interior point method performs much less competitively than the others, while it only reaches 1e−2
after N = 2000 iterations. Another point that can be recognized from Table 2 is that the Soft Max
method could only solve problems with small size, for example for problems in dimension N = 50
and N = 200 the singularities appear after less than 100 iterations.

Table 2: Several methods to solve NAVE

Error Iterations

Example Vector b θ1 θ2 SM IP θ1 θ2 SM IP

3.3 d = 10 9.3e− 11 1.5e− 11 5.5e− 12 1.6e− 2 20 13 173 2000

d = 50 1.4e− 11 5.3e− 15 NaN 8.96e− 3 29 41 41 2000

d = 200 8.39e− 11 1.32e− 14 NaN 9.55e− 3 45 76 96 2000

3.4 b1 4.7e− 11 1.7e− 11 7e− 14 5.5e− 2 14 9 8 2000

b2 1.7e− 11 3.6e− 11 1.8e− 12 4e− 1 22 16 15 2000

b3 9.3e− 11 1.4e− 13 1.4e− 13 2e+ 2 211 205 205 2000

3.5 b∗1 5.5e− 11 1.3e− 14 2e− 14 7e− 2 16 12 12 2000

b∗2 5.5e− 11 2.2e− 14 4.7e− 14 9.1e− 1 26 22 16 2000

b∗3 6.1e− 11 1.4e− 10 3e+ 1 3.8e− 0 50 43 2000 2000

Figure 5(a) and 5(b) display the performance time between different methods for Example 3.3
with the size n = 20 and Example 3.4, respectively. We did the observation with 50 samples and
the vector b is randomly generated with values in [−10, 10]. At a first sight, the interior point
method appears to be the slowest one in comparison with the other three methods. As shown in
Figure 5(a), the θ1–smoothing performs the best choice among all the methods. If we look carefully,
in lower dimension as Example 3.4, the Soft Max and θ2–smoothing performs slightly better than
θ1–smoothing method.
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(a) Example 3.1 in dimension n = 20. (b) Example 3.2.

Figure 5: Performance time.

4 Conclusion and discussion

In this work, we applied smoothing techniques commonly used for Nonlinear Complementarity
Problems (NCP) to Nonlinear Absolute Value Equations (NAVE). We first showed that a NAVE
can be formulated as a NCP with an implicitly known corresponding mapping. We then established
that a NAVE can be effectively addressed under a mild direct assumption on the NAVE function.
Additionally, we clarified a technical assumption used in some smoothing approaches, proving its
equivalence to a  Lojasiewicz inequality, thus showing its broad applicability. Last but not least, we
provided illustrative examples and applications that through numerical verification reveal effective-
ness and potential of this approach.

In a future work, we aim to establish error bounds or estimations and study the complexity of the
proposed method in favorable situations, such as when the implicitly corresponding mapping in the
NCP formulation is monotone or strongly monotone.
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